
PlanktonID – combining deep learning and 
citizen science to identify plankton 
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Fig. 1: The Underwater Vision Profiler 5 (Hydroptic SARL; 
Picheral et al. 2010)

- In situ ocean optics deliver highly diverse and constantly growing plankton image datasets

- Datasets with millions of images require the development of advanced image identification techniques

- We use deep-learning and Citizen Science to classify plankton images (https://planktonid.geomar.de)

- Already more than 3.5 Million images have been sorted since January 2017 with a high success rate

- Our results show that rhizaria are highly abundant in upwelling regions, possibly because they can tolerate
very low oxygen concentrations
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Citizen science

Fig. 2: The global UVP5 image dataset holds more than 20 Million 
images (red - GEOMAR; blue - international collaborators)

Fig. 4 (top): 
Categories
currently
distinguished on 
PlanktonID

Fig. 5 (left): 
Images sorted per 
day since
PlanktonID start

Fig. 9 (right): 
Rhizaria are highly
abundant in 
upwelling regions.

PlanktonID data with
black borders, Biard
et al. 2016 data with
grey borders. 
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Data evaluation

Fig. 6 a,b (bottom): 
Users and success
rate
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~85 %
of all copepods
get a user score

> 0.9

== correct id

Fig. 7  (right):
Deep Learning and
Citizen Scientists
validate 40 % of all 
Copepods
succesfully

Fig. 8 a,b (bottom):
Some rhizaria
thrive even at 0 
oygen off Peru, 
whereas copepods
avoid anoxic layers.
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https://planktonid.geomar.de/

